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Data-Parallel Line Relaxation Method
for the Navier–Stokes Equations
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The Gauss–Seidel line relaxation method is modi� ed for the simulation of viscous � ows on massively parallel
computers. The resulting data-parallel line relaxation method is shown to have good convergence properties for a
series of test cases. The new method requires signi� cantly more memory than the previouslydeveloped data-parallel
relaxation methods, but it reaches a steady-state solution in much less time for all cases tested to date. In addition,
the data-parallel line relaxation method shows good convergence properties even on the high-cell-aspect-ratio
grids required to simulate high-Reynolds-number � ows. The new method is implemented using message passing
on the Cray T3E, and the parallel performance of the method on this machine is discussed. The data-parallel line
relaxation method combines the fast convergence of the Gauss–Seidel line relaxation method with a high parallel
ef� ciency and thus shows promise for large-scale simulation of viscous � ows.

Introduction

T HE numerical simulationof large complex � ow� elds is a com-
putationally intensive task. In addition, the large disparity be-

tween the different length scales encountered in high-Reynolds-
number simulations can result in a stiff equation set that usually
requires an implicit method to converge to a steady-state solution
in a reasonable time. The cost associatedwith solving this equation
set makes the use of a massively parallel supercomputer attractive
because these machines have a very large peak performance.How-
ever, most implicit methods are inef� cient when implemented on a
parallel computer. A true implicit method requires the inversion of
a large sparse matrix, which involves a great deal of interprocessor
communication. This results in poor computational performance.
The traditional solution to this problem has been to choose an ef-
fective serial algorithmand implement it in parallel using some sort
of domain decomposition.This approach has been used with some
success,1 but many of the most effective serial algorithms contain
inherent data dependencies and cannot be implemented effectively
in parallel without modi� cation.

Another approach for structured meshes is to design a new im-
plicit algorithmthat would take advantageof the structuredcommu-
nication pattern. Such an algorithmwould be inherentlywell suited
to a data-parallelenvironment without explicit domain decomposi-
tion. The algorithm would be ef� cient and easy to implement in ei-
therdata-parallelor message-passingmodeandwouldbeportableto
a wide variety of parallel architectures.For example, Candler et al.2

and Wright et al.3 have shown that it is possible to make some mod-
i� cations to the Yoon and Jameson lower-upper symmetric Gauss–

Seidel (LU-SGS)method4 thatmake it almostperfectlydataparallel.
The resulting data-parallel lower-upper relaxation (DP-LUR) me-
thod replaces the diagonal Gauss–Seidel sweeps of the LU-SGS
method with a series of pointwise relaxation steps. The DP-LUR
method was shown to be attractive for the solution of a variety of
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viscous problems. However, the method shows a signi� cant degra-
dation of the convergencerate for high-Reynolds-number� ows be-
cause of the high-cell-aspect-ratio grids needed to resolve the thin
boundary layer. Modi� cations to the DP-LUR method that help to
alleviate this problem were presented in Ref. 3, but it remains an
issue for high-Reynolds-number� ow simulations.

To fully address this convergence degradation on high-cell-
aspect-ratio grids, it is necessary to solve the implicit equation
in a more closely coupled manner. This is the approach taken in
the Gauss–Seidel line relaxation(GSLR) method of MacCormack,5

which breaksa two-dimensionalprobleminto a seriesof block tridi-
agonal matrix solutions in the body-normal direction. This method
would be inef� cient on a massively parallel machine because the
Gauss–Seidel sweeps would require frequent and irregular inter-
processor communication. However, it is possible to modify this
method using an approach similar to that previously applied to the
LU-SGS method. By replacing the Gauss–Seidel sweeps with a
series of line relaxation steps, the algorithm can be parallelized
effectively. In addition, the potential for a solution bias resulting
from the use of the Gauss–Seidel sweeps, which can cause prob-
lems in three-dimensionalsimulationsusingtheGSLR,6 is removed.
This paper discusses the modi� cations required to create this data-
parallel version of the GSLR algorithm. The resulting data-parallel
line relaxation (DPLR) method is then compared with the DP-LUR
method and the originalGSLR method on a variety of viscousprob-
lems. Finally, implementation and performance issues on two dif-
ferent parallel computers, the Cray T3E and the Thinking Machines
CM-5, are discussed.

Numerical Method
The fully implicit form of the two-dimensional Navier–Stokes

equations in curvilinear coordinates is

U n C 1 ¡ U n

1t
C

@ QFn C 1

@»
C

@ QGn C 1

@´
D 0

where U is the vector of conserved quantities and QF and QG are the
� ux vectors in the » (body-tangential) and ´ (body-normal) direc-
tions.The � ux vectorscan be split into convectiveand viscousparts:

QF D F C Fv; QG D G C Gv

If we focus on the inviscid problem for now, we can linearize the
� ux vector using

F n C 1 ’ Fn C @F

@U
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We then split the � uxes according to the sign of the eigenvalues of
the Jacobians

F D ACU C A¡U D FC C F¡

to obtain the standard upwind � nite volume representation

±U n
i; j C .1t=Vi; j / ACi C 1

2 ; j Si C 1
2 ; j ±Ui; j ¡ ACi ¡ 1

2 ; j Si ¡ 1
2 ; j ±Ui ¡ 1; j
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2 ; j ±Ui C 1; j
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(1)

where Rn
i; j is the change in the solution due to the � uxes at time

level n, S is the surface area of the cell face indicated by its indices,
and Vi; j is the cell volume.

For the solution of the Navier–Stokes equations the appropriate
implicit viscous Jacobians must be included in Eq. (1). Following
the method of Tysinger and Caughey,7 we can linearize the viscous
� ux vectors Fv and Gv , assuming that the transport coef� cients are
locally constant, to obtain

Fn C 1
v ’ Fn

v C @

@»
.L±U /n ; Gn C 1

v ’ Gn
v C @

@´
.N ±U /n

where theviscousJacobiansL and N are evaluatedin sucha way that
they are functionsof the vectorof conservedquantitiesU and not the
derivatives of U . With these de� nitions Eq. (1) will be unchanged
if we simply replace the Euler Jacobians A and B with QA and QB,
where

QAC D AC ¡ L ; QA¡ D A¡ C L

QBC D BC ¡ N ; QB¡ D B¡ C N

Equation (1) is the basic starting equation for many implicit
schemes, includingboth the DP-LUR and the DPLR methods.From
this point, however, the derivationof these two methods is different.
We � rst brie� y review the derivation of the DP-LUR method here
so that the similarities between the DP-LUR and the new DPLR
method may be noted. The full derivation of the DP-LUR method
can be found in Refs. 2 and 3.

DP-LUR Method
The � rst step in the derivationof the DP-LUR method is to move

all of the off-diagonal terms in Eq. (1) to the right-hand side. The
method of Yoon and Jameson4 is then used to approximate the im-
plicit Jacobians with

AC D 1
2 .A C ½A I /; A¡ D 1

2 .A ¡ ½A I /

where ½A is the spectral radius of the Jacobian A, given by the mag-
nitude of the largest eigenvalue juj C a, where a is the speed of
sound. With this approximation the differences between the Jaco-
bians on the diagonal become diagonal matrices, and the solution
of the resulting equation is greatly simpli� ed.

The LU-SGS algorithm employs a series of corner-to-corner
sweeps through the � ow� eld using the latest available data for the
off-diagonal terms to solve the resulting equation. Although this
method has been shown to be ef� cient on a serial or vectormachine,
signi� cant modi� cations are required to reduce or to eliminate the
data dependencies and to make the method parallelize effectively.
The DP-LUR approachsolves this problemby replacing the Gauss–

Seidel sweeps with a series of pointwise relaxation steps using the
following scheme. First, the right-hand-side Ri; j is divided by the
diagonal operator to obtain ±U .0/

±U .0/

i; j D I C ¸n
A I C ¸n

B I
¡1

i; j
1t Rn
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Then a seriesof kmax relaxationsteps are made using, for k D 1; kmax,
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then

±U n
i; j D ±U .kmax /
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where ¸A D ½A1t S=V . For the solutionof viscous� ows,Eq. (2) can
be modi� ed to include the contribution of the appropriate implicit
viscous Jacobians by using a spectral radius approximation.3 With
this approach, all data that are required for each relaxation step
have alreadybeen computedduring the previousstep.Therefore, the
entire relaxation step may be performed simultaneously in parallel
without data dependencies.In addition,because the same pointwise
calculation is performedon each computationalcell, load balancing
will be ensured as long as the data are evenly distributed across
the available processors. Thus, the DP-LUR algorithm is almost
perfectlydata parallel,and aside from the requirednearest-neighbor
communication, a massively parallel computer should approach its
peak operationalperformance.

A modi� ed versionof this method that improves the convergence
rate on high-cell-aspect-ratio grids can be derived from Eq. (2) if the
Yoon and Jameson4 approximation is relaxed and the approximate
Jacobians are replaced with their exact counterparts. The resulting
full matrix DP-LUR method improves performance by eliminat-
ing the overstabilization that is characteristic of all diagonalized
methods.8 The full matrix method is slightly more memory and
computationallyintensive because it requires the storage and inver-
sion of a single Jacobian matrix at each grid point, but it retains the
excellent parallel ef� ciency of the original method.3

DPLR Method
Although both variations of the DP-LUR method are ef� cient

for the simulation of many � ows, they are both affected to some
extent by the high-cell-aspect-ratio grids necessary to resolve the
boundary layers of high-Reynolds-number� ows. The dependence
of the convergence rate on the cell aspect ratio was reduced by the
introductionof the fullmatrix DP-LUR method,as discussedearlier,
but some performance degradation is still apparent. The remaining
dependence is primarily due to the fact that these methods place
all of the off-diagonal terms on the right-hand side, and thus their
effect is only weakly coupled to the diagonal. A more accurate
approach would be to move all of the off-diagonal terms back to
the left-hand side, as in Eq. (1), and to solve the fully coupled
problemusing a large block-bandedmatrix inversion.However, this
approachwould be extremely expensiveand inef� cient on a parallel
machine. A better approach is possible for viscous external � ows if
we recognize that the viscous � ow gradients will be much stronger
in the body-normal .´/ direction. Thus, the physical problem is
much more strongly coupled in the body-normaldirection, and it is
possible to move just these body-normal terms back to the left-hand
side, resulting in the following:

OBi; j ±Ui; j C 1 C OAi; j ±Ui; j ¡ OCi; j ±Ui; j ¡ 1

D ¡ ODi; j ±Ui C 1; j C OEi; j ±Ui ¡ 1; j C 1t Rn
i; j (3)

where the matrices denoted by the carets are de� ned from the Jaco-
bians as
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In this way it is possible to solve Eq. (3) for all j points at each
i location as a series of fully coupled block tridiagonal systems
aligned in the body-normal direction. This was the approach used
by MacCormack in the GSLR method.5 In this method the problem
is solved via a series of alternating forward and backward sweeps
through the � ow� eld in the i direction, using the latest available
data for the terms on the right-hand side. This method works well
for two-dimensional � ows on a serial or vector machine, but it is
not straightforwardto extendthe methodto three-dimensional� ows.
The obvious approach to the three-dimensional case is to continue
to set up the problem as a series of block tridiagonal systems nor-
mal to the body and to sweep in both the axial and circumferential
directions. However, this approach can lead to a nonphysical bias
in the converged solution due to the biasing that is inherent in the
Gauss–Seidel sweepingprocess.6 In addition,the data dependencies
in the Gauss–Seidel sweeps would make the algorithm inef� cient
on a parallel machine. However, it is possible to eliminate both of
these dif� culties if we modify the GSLR method by replacing the
Gauss–Seidel sweeps with a series of line relaxation steps, using a
procedure similar to that outlined in the preceding section for the
DP-LUR method. The resulting DPLR method is then described by
the followingscheme.First, the implicit terms on the right-handside
of Eq. (3) are neglected, and the resulting block tridiagonal system
is factored and solved for ±U .0/:

OBi; j ±U .0/

i; j C 1 C OAi; j ±U .0/

i; j ¡ OCi; j ±U .0/

i; j ¡ 1 D 1t Rn
i; j

Then a seriesof kmax relaxationsteps are made using,for k D 1; kmax,

OBi; j ±U .k/
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i; j ¡ OCi; j ±U .k/

i; j ¡ 1

D ¡ ODi; j ±U .k ¡ 1/

i C 1; j C OEi; j ±U .k ¡ 1/

i ¡ 1; j C 1t Rn
i; j

then

±U n
i; j D ±U .kmax /

i; j .4/

Boundary conditions are implemented by folding the contribu-
tion of the boundary cells into the appropriate matrix in a manner
identical to that used for GSLR.5 The DPLR method requires a sin-
gle lower-upper (LU) factorization and kmax C 1 backsubstitutions
per iteration. By using this approach, all of the data required for
each relaxation step have already been computed during the pre-
vious step. Therefore, as long as the data are distributed on the
processors in such a way that the body-normal direction is entirely
local, the entire relaxation step can be performed simultaneously
in parallel with no data dependencies. In addition, because the i -
direction, off-diagonal terms are all equally lagged by one relax-
ation step, the biasingproblemno longerexists, and implementation
of a three-dimensional version of the algorithm becomes straight-
forward. The DPLR approach will use signi� cantly more memory
than theDP-LUR methodsbecause� ve Jacobianmatrices (seven for
three-dimensional� ows) must now be computed and stored at each
grid point as comparedwith one for the full matrix DP-LUR method
and none for the diagonal method. For perfect gas � ows the DPLR
method uses about twice as much memory as the DP-LUR method
for the two-dimensionalimplementationand four times as much for
the three-dimensionalversion. However, the DPLR method uses no
more memory than the original GSLR method and should converge
much faster than either DP-LUR approach due to the more exact
formulation of the implicit operator.

Results
The perfect gas implementation of the DPLR method has been

tested on two- and three-dimensionalgeometries with an emphasis
on evaluating the convergence properties and parallel performance
of the new method. The primary test case for this paper is the Mach
15 perfectgas � ow over a cylinder-wedgeblunt body,with Reynolds
numbers Re based on the freestream conditions and body length
varying from 3 £ 104 to 3 £ 108 . A sample 128 £ 128 grid for this
problem is shown in Fig. 1. The three-dimensional computations
were performed on multiple planes of the same two-dimensional
grids, which makes it easy to directly compare the convergence
properties of the two- and three-dimensional implementations of
the method.

Fig. 1 Sample 128 £ £ 128 cylinder-wedge grid. Every fourth grid point
is shown.

The boundary-layerresolution is measured with the wall variable

yC D ½yu¤=¹

where u¤ is the friction velocity, given in terms of the wall stress
¿w by u¤ D

p
.¿w=½/. For a well-resolved boundary layer the mesh

spacing is typically chosen so that yC · 1 for the � rst cell above the
body surface.The grid for each case is then exponentiallystretched
from the wall to the outer boundary.

Although the results presented here are based on modi� ed � rst-
order Steger–Warming � ux vector splitting for the numerical � ux
evaluation,9 note that the derivation of the implicit algorithm is
general and can be used with many � ux evaluationmethods. In fact,
Liou and Van Leer10 have shown that the use of Steger–Warming
splitting can be effective and robust for the implicit part of the
problem, even when the � uxes are evaluated by a different method.
The DPLR method is in all instances more sensitive to the size
of the implicit time step than the DP-LUR method, as expected,
because the DPLR method involves a more exact representationof
the problem, and therefore the size of the time step will have more
physical meaning. In all cases presented here, the implicit time step
was chosen to correspond to a Courant–Friedrichs–Lewy (CFL)
number of 1 in the � rst iteration and was rapidly increased to its
maximum stable value. The size of the maximum stable time step
for each case was governed primarily by the freestreamconditions,
with little or no limitation due to the mesh spacing. Therefore the
maximum CFL number varied considerably from case to case.

Figure 2a shows the effect of the numberof relaxationsteps (kmax )
on the convergence rate of the method on the two-dimensional
cylinder-wedge geometry at a Reynolds number of 3 £ 104 and
yC D 1. In Fig. 2a the explicit solution was obtained using a stan-
dard � rst-order Euler method with the maximum stable time step
(CFL D 0:1). The line marked kmax D 0 corresponds to performing
just the initial block tridiagonal solution along each i line, with no
implicit coupling in the i direction. The kmax D 0 approach is simi-
lar to that proposed by Wang and Widhopf11 and later implemented
in parallel by Taylor and Wang.12 Although the kmax D 0 approach
offers a signi� cant improvement over the explicit method, we see
from Fig. 2a that the convergencerate of the method improveswhen
the effect of the i -direction coupling terms is included (kmax > 0).
The DPLR method shows a dependence on kmax similar to that of
the DP-LUR methods, with the convergence rate steadily improv-
ing as kmax increases, up to kmax D 6. Figure 2b shows the effect of
the number of relaxation steps on the cost of the method, evaluated
as total CPU time on an eight-processor Cray T3E-900. Because
the cost of evaluating the Jacobian matrices and setting up the LU
factored block tridiagonal system is much greater than the cost of
performingadditionalbacksubstitutions,we see that increasingkmax

also improves the cost effectiveness of the method, up to kmax D 4.
As shown in Fig. 2b, values of kmax larger than 4 give little improve-
ment in convergenceand are not cost effective. Therefore, all of the
results presented in this paper were run at kmax D 4.
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a)

b)

Fig.2 a)Convergence historiesandb)CPU times on an eight-processor
Cray T3E-900 for the DPLR method showing in� uence of kmax: two-
dimensional cylinder-wedge blunt body at M 1 = 15 and Re = 3 £ £ 104;
128 £ £ 128 grid with y++ = 1 for the � rst cell above the body.

Fig. 3 Convergence histories for the DPLR method as compared with
the originalGSLR method: two-dimensionalcylinder-wedgebluntbody
at M 1 = 15 and Re = 3 £ £ 104; 128 £ £ 128 grid with y++ = 1.

The convergencerate of the new DPLR method is comparedwith
the original GSLR method in Fig. 3. Both methods are tested at the
same conditions as in Fig. 2. The methods behave similarly, with
the convergence rate increasing signi� cantly after about 150 itera-
tions.The slower convergencerate at the beginningof the solution is
due to the motion of the bow shock through the computationalgrid.
Because this is a highly nonlinear process, the shock will move
at most one computational cell per iteration. However, once the
bow shock has reached its � nal location, the block tridiagonal so-
lutions rapidly drive the error norm toward machine zero. We see

Fig. 4 Convergence histories for the DPLR method on a high-Mach-
number and low-supersonic-Mach-number � ow: two-dimensional
cylinder-wedge blunt body at Re = 3 £ £ 104; 128 £ £ 128 grid with y++ = 1
for each case.

that, although both methods achieve a 10-order-of-magnitude re-
duction in the density error norm in fewer than 300 iterations, the
DPLR method using kmax D 4 actually performs a little better than
the GSLR method with four sweeps through the � ow� eld. This is
because the DPLR method allows larger time steps to be used for
this case. If both methods are run with the same time step, their per-
formance is nearly identical. This is surprising because the GSLR
method always uses latest available data and thus should allow in-
formation to travel across the entire computational domain during
each implicit iteration, whereas with the DPLR method informa-
tion can travel only kmax cells per iteration in the axial (i ) direction.
However, both methods are identical in their treatment of the body-
normal terms.

Figure 4 compares the convergence rate of the DPLR method on
two cylinder-wedge � ows at Mach 15 and 2. Both cases are run at
a Reynolds number of 3 £ 104. We see that both cases reach a 10-
order-of-magnitudereductionin the densityerrornormin fewer than
300iterations.However, therearedifferencesin theconvergencehis-
tories. The low-Mach-numbercase requires fewer iterations for the
bow shock to reach its � nal location because the low-Mach-number
� ow is less nonlinear. In addition, once the shock has reached its
� nal location,the convergencerate of the Mach 2 � ow is slower than
that for the Mach 15 � ow, due to the longer characteristic� ow time.
Similar results are obtainedat otherMach numbers. This shows that
the DPLR method can be an effective tool for the solution of both
supersonic and hypersonic � ows.

The performanceof the DPLR method is also examinedfor three-
dimensional � ows, using multiple identical planes of the baseline
128£ 128 cylinder-wedgeblunt body grid. In all of the cases, there
is essentially no difference in the convergence histories between
the two-dimensional and three-dimensional implementations. By
performingthe three-dimensionalcalculationson multipleplanesof
a two-dimensional grid, we can also easily check for any evidence
of the solutionbias that is exhibitedby the three-dimensionalGSLR
method. This effect is always more noticeablein such cases because
any solutionbias will tend to create a nonphysicalcross� ow velocity
in the direction in which the multiple planes are projected.This will
be evidentevenbeforeanyotherdifferencescanbedetectedbetween
the solutions on different planes. In all of the cases tested to date,
the maximum cross� ow velocity in the three-dimensional� ow� eld
is more than 10 orders of magnitude smaller than the freestream
velocity.We feel that thisvalueis suf� cientlysmall to be attributedto
machine roundofferrors, and thus the DPLR method has eliminated
the solution bias problem.

The new DPLR method is compared with the diagonal and full
matrix DP-LUR methods in Fig. 5 for the cylinder-wedge blunt
body at a Reynolds number of 3 £ 104 and yC D 1. All three meth-
ods are run at kmax D 4. We see in Fig. 5a that the DPLR method is
very ef� cient, achieving a 10-order-of-magnitudereduction in the
density error norm in fewer than 300 iterations, as compared with
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a)

b)

Fig.5 a)Convergence historiesandb)CPU times on an eight-processor
Cray T3E-900 for the DPLR method as compared with the two DP-LUR
methods: two-dimensional cylinder-wedge blunt body at M1 = 15 and
Re = 3 £ £ 104; 128 £ £ 128 grid with y++ = 1.

2300 iterations for the full matrix method and 6200 iterations for
the diagonal DP-LUR method. However, convergence in fewer it-
erations does not necessarily imply that the method will be more
cost effectiveon a massivelyparallelmachine. It is also necessaryto
know how much each iteration of the method will cost. Therefore,
to examine the effectivenessof the new algorithm,Fig. 5b compares
the cost of the methods, plotted as CPU time on an eight-processor
Cray T3E-900. From Fig. 5b we see that the DPLR method also has
a high parallel ef� ciency and is by far the most cost effective of the
three methods. For this problem the line relaxation method reaches
a 10-order-of-magnitudereduction in the density error norm in just
35 s, compared with 235 s for the full matrix method and 359 s
for the diagonal method. This shows that the DPLR method can
potentially be a powerful tool in the simulation of viscous � ows.

Figure 6 shows the convergencehistoriesof theDPLR method for
three viscous � ows with Reynolds numbers ranging from 3 £ 104

to 3 £ 108 . The 128 £ 128 grid for each case was chosen so that
yC D 1 for the � rst cell above the body, ensuring that the bound-
ary layers for all cases are equally well resolved. Because the
boundary-layerthicknessdecreaseswith increasingReynolds num-
ber, the maximum cell aspect ratio (CAR) of the grid must in-
crease as well to meet the yC D 1 requirement. For the test cases
in Fig. 6, the maximum CAR ranges from 35 for Re D 3 £ 104 to
about 125,000 for Re D 3 £ 108. We can see that, although each of
the casesbehavesdifferentlyduring the earlyphasesof the � ow evo-
lution,all convergewith the same terminal slopeafter the bow shock
reaches its � nal location. In addition,there is essentiallyno increase
in the number of iterations required to reach steady state as the
Reynolds number (and therefore the CAR) is increased.

Figure 7 compares the convergence properties of the DPLR
method with the DP-LUR methods on several viscous � ows with
Reynolds numbers ranging from 3 £ 104 to 3 £ 108. Once again,

Fig. 6 Convergence histories for the DPLR method showing in� uence
of Reynolds number: two-dimensional cylinder-wedge blunt body at
M 1 = 15; 128 £ £ 128 grid with y++ = 1 for each case.

Fig. 7 CPU times on an eight-processor Cray T3E-900 required to
achieve 10 orders of density error norm convergence for the DPLR
and DP-LUR methods as a function of the Reynolds number: two-
dimensional cylinder-wedge blunt body at M1 = 15 and Re = 3 £ £ 104;
128 £ £ 128 grid with y++ = 1 for each case.

the 128 £ 128 grid for each case was chosen so that yC D 1 for the
� rst cell above the body. As the Reynolds number is increased by
four orders of magnitude, the amount of computer time required
to achieve a 10-order-of-magnitude reduction in the density error
norm remains constant for the DPLR method, whereas the time in-
creases by a factor of 6 for the full matrix method and 7 for the
diagonal method. This shows that the more exact implicit operator
used in the DPLR method eliminates the convergence degradation
on high-cell-aspect-ratio grids.

Figure 8 compares the viscous and inviscid implementations of
the DPLR method for two of the cases in Fig. 6. The grid for each
case was chosen to satisfy the yC D 1 condition for the viscous so-
lution. The inviscid solutions were then obtained on the same com-
putational grids. We see that the convergence rates for the viscous
and inviscid versions of the method are almost identical. This is in
direct contrast to the DP-LUR method, which always requires more
iterations to converge the viscous solution. This again shows the
bene� t of moving the body-normal terms back to the left-hand side
of the equation and coupling them directly to the diagonal.

Parallel Performance
The DPLR algorithm is inherentlydata parallel by design and re-

quiresno asynchronouscommunicationor computation.This makes
the code readily portable to a variety of parallel architectures with
only minor modi� cations because it is relatively easy to modify a
data-parallelcode to run effectivelyon a message-passingmachine,
whereas the reverse is not necessarily possible. The DPLR method
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Fig. 8 Convergence histories for the viscous and inviscid implementa-
tion of the DPLR method: two-dimensional cylinder-wedge blunt body
at M 1 = 15; 128 £ £ 128 grid with y++ = 1 for each case.

was implemented and tested on two different massively parallel
architectures. First, a message-passing version using the Message-
Passing Interface (MPI) standard for interprocessorcommunication
was implemented on the 272-processor Cray T3E-900 located at
Network Computing Services, Inc. (formerly the Minnesota Super-
computerCenter). Eachprocessorof thismachinehas128Mbytesof
memory and a theoreticalpeak performanceof 900 M� ops. In addi-
tion, a data-parallelversion was implemented on the 896-processor
Thinking Machines CM-5 located at the University of Minnesota
Army High Performance Computing Research Center. Each pro-
cessor of this machine has 32 Mbytes of memory and four vector
units, yielding a theoretical peak performance of 128 M� ops per
processor.

The data-parallel implementation of the new DPLR method
should retain the perfect scalability and high parallel ef� ciency that
characterized the DP-LUR method2 because the algorithm design
is very similar. However, it is dif� cult to show this on the CM-5
because it is a vector parallelmachine, and thus large vector lengths
are required to ensure good performance. In addition, it has been
shown that only the number of points in the dimensions that are
spread across all of the nodes should be used when evaluating the
vector length.2 To solve the block tridiagonal system required by
the DPLR method without interprocessorcommunication, it is nec-
essary that all j points corresponding to a particular i location be
entirely on processor, whereas with the DP-LUR method both the
i and j directions can be spread across the available processors.
Therefore, when the 128£ 128 test case presented in this paper is
run on a 64-processorCM-5 with four vectorunits perprocessor,the
vector length will be 64 for the DP-LUR method but will actually
be less than 1 for the DPLR method. This means that the DPLR
method is not using the vector hardware on the processors. There-
fore we would expect the two-dimensionalDPLR method to be very
slow on the CM-5 due to the small vector length, even thoughit may
have a high parallel ef� ciency. This is indeed the case for the im-
plementation tested. For the 128 £ 128 test case presented here, the
DPLR method runs at only 1.39 M� ops per processor, as compared
with 13.2 for the diagonal DP-LUR method and 20.7 for the full
matrix method. This would not be a problem on a machine with-
out vector hardware. Thus, although the DPLR method should be
ef� cient on many data-parallelarchitectures,it is dif� cult to directly
calculate the parallel ef� ciency of the method on the CM-5.

The performance of the message-passing implementation of the
method on the T3E is easier to evaluate because there is no vec-
tor hardware on this machine. In this implementation, the data are
distributed across the processors by breaking the problem in the
i direction. Communication latency is masked by using nonblock-
ing sends and receives in MPI. The parallel speedup curve for the
two-dimensional DPLR algorithm on the T3E-900 is presented in
Fig. 9. We see that the method has almost perfect speedup,up to the
maximum numberof processorstested. In fact, on 32 processors the
speedup is 31.3, which corresponds to a parallel ef� ciency of 0.98.

Fig. 9 Parallel ef� ciency for the two-dimensional viscous DPLR
method on the T3E-900: 512 £ £ 512 computational grid used.

The sustained performance for the two-dimensional and three-
dimensional implementationsof the DPLR method on the T3E-900
is about75 M� opspernode,which is only 8.3% of the peak theoreti-
cal performanceof the machine.This number seems quite low, but it
is comparable to other publishedresults.The NAS 2 parallel bench-
mark results offer the best comparison because these codes have
been written to simulate actual computational� uid dynamics appli-
cations, and the individual machine vendors have not been allowed
to perform assembler-level optimizations to the source code. Un-
fortunately, NAS 2 benchmark results have not yet been published
for the T3E. However, results from the T3D for the block tridiag-
onal (BT) benchmark show a performance of about 10 M� ops per
processor.13 In addition, results for the NAS 1 benchmarks, which
have been published for both the T3D and T3E-600 (600 M� ops
peak performance), show that the sustained speed on the T3E-600
is typicallyabout 3.3 times that on the T3D.14 This would result in a
performance of about 33 M� ops per processor on the T3E-600 for
the BT benchmarkor about50 M� opsperprocessoron theT3E-900,
assuming perfect scalability. Therefore, the 75 M� ops per proces-
sor obtained for the DPLR method seems reasonable.However, it is
possible that further optimizations can be made to the source code
that would increase the performance.

Conclusions
The GSLR method has been modi� ed to make it amenable to

the solution of the Navier–Stokes equations on massively parallel
supercomputers. The resulting DPLR method replaces the Gauss–

Seidel sweepsof the originalwith a seriesof line relaxationsteps. In
this manner all of the data dependencies in the original method are
removed, and each relaxation step becomes almost perfectly data
parallel.Because of its design, the new method can be easily imple-
mented in either the data-parallelor message-passingprogramming
styles. The method also retains the good convergenceproperties of
the original GSLR method, and in fact with four relaxation steps it
converges in fewer iterations for the test cases considered. In addi-
tion, the relaxationsteps eliminate the solution bias problem exhib-
ited by the three-dimensional GSLR method, and thus the DPLR
method can easily be extended to the solution of three-dimensional
� ows.

The DPLR method uses considerably more memory than either
of the previously developed DP-LUR methods but demonstrates a
dramatic improvement in cost effectiveness, reaching steady state
in about 15% of the time on a Cray T3E. In addition, both DP-
LUR methods showed a degradation of the convergence rate when
high-Reynolds-number� ows were simulated. However, the DPLR
method is more strongly coupled in the body-normal direction and
thus has good convergenceproperties at all Reynolds numbers.

The new methodhasbeen implementedusingmessagepassingon
the Cray T3E-900 and shows nearly perfect speedup,with a parallel
ef� ciencyof 98% evenwhen32processorsare used.The singlenode
performanceof the method is about 75 M� ops per processor,which
is only 8.3% of the peak theoretical performance of the machine.
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However, this value is comparable to data obtained for the NAS
2 parallel benchmarks and does not detract from the high parallel
ef� ciency of the method.

In short, the high parallel ef� ciency and good convergencechar-
acteristics of the DPLR method make it attractive for the solution
of very large compressible � ow problems.
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